
CoralCMD User Documentation
<operz@coralcmd.net>

@(#)coralcmd.tr 1.3 2026/01/20 19:06:25 CORAL

Welcome to CoralCMD.net! This is the user documentation for using our timesharing sys-
tem’s resources.

1. What is CoralCMD?

CoralCMD is a multi-user, timesharing system. In the modern age, these are often referred
to as ‘‘pubnix’’ (for PUBlic uNIX) or ‘‘tilde’’ systems. These systems are services, where users
may log in as a user, usually via a Unix shell over SSH (or, in less common cases, unencrypted
telnet or rlogin). CoralCMD runs OmniOS, a distribution based on the Illumos operating system,
which is actively developed as a fork of the now-defunct OpenSolaris OS/NET source code.

CoralCMD hosts several services for users to enjoy and use, including (but not limited to):

• Shell account access, which includes common development tools and version control for
many programming languages and text editors, as well as thousands of commands for many
different tasks

• Email accounts, from both mail clients on the shell and over the network via
IMAP/POP3/SMTP

• Web space hosting, encrypted via HTTPS; this includes server-side CGI scripts
• Around 40GiB of disk space for each user’s home directory
• (SOON TO COME) A PBX extension connected to the North American PSTN

Sign-up details and guidelines are located at: https://www.coralcmd.net/signup.html

2. Connecting over SSH to your shell account

TODO.

3. Tips on Unix shell usage

While you likely know a fair amount about Unix systems and usage of their shells already,
here are some tips for lesser-known, yet extremely helpful things on our system:

(1) To change your shell, type chsh. To change your display name (also known as
GECOS/Comment) field, type chfn. To change your password, type chpass. The
passwd command has been deprecated and should no longer be used.

(2) While you may read the Unix manual pages with the man command, you may also use
the apropos command to search for keywords within the man pages, in case you don’t
know the exact name. You may also suffix the page name with .NUMBER, where NUM-
BER is a manual section, such as 1 for user commands, or 3head for headers of library
functions. Example: socket.3head

(3) On CoralCMD, there are multiple versions of the same command installed in multiple lo-
cations, with some containing varying amounts of or different functionality. You may

view the full paths to these commands by using the which -a command. For example,
for the file command: which -a file

(4) Editing your timezone to display correct dates is fairly simple. Append export
TZ=Region/Major_City to your $HOME/.profile login script. An example of a
city-based timezone would be Australia/Perth, and an example of a symbolic
timezone would be EST5EDT. A list of valid timezones can be found at this link:
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

(5) The calendar command and file format can be used to set up a reminder service. If
you put ‘‘12/17 17th of dec’’ in $HOME/calendar, the calendar reminder
service will send you an email at midnight UTC the night before and the day of the
event.

(6) The vacation command can be used to set up an out-of-office message as an auto-re-
ply to incoming emails. This can be set up via a user’s $HOME/.forward file, which
can also be used to forward emails to another user or address, a file, and pipe to a com-
mand (in this case, vacation). For details, see the manual pages vacation(1) and for-
ward(5).

(7) The quota -v command will show how much disk space you have taken up and how
much you have available.

4. Email

4.1. Email over the network

Protocol Port Encryption Type Authentication Type

IMAP 993 SSL/TLS (Implicit Encryption) PLAIN AUTH
POP3 995 SSL/TLS (Implicit Encryption) PLAIN AUTH
SMTP 587 STARTTLS (Explicit Encryption) PLAIN AUTH

4.2. Email from the command line

There are a few email clients installed that you may use on the command-line. Three no-
table ones are mutt, alpine, and nmh.

5. Manual Pages

You may view the manual pages using the man command as described in the tips section,
but you may also list all the page titles and descriptions of a specific manual section, using this
command:

apropos . | grep ’(7)’

The apropos command usually lists the manual pages that match the keyword(s) given as
command arguments, but in this case, the ‘‘.’’ (dot) causes the command to list all of the manual
pages, then the grep command sorts by the section.

Sometimes, there may be duplicate man page names, which causes confusion as the man
command only shows the first result it finds. You may display your ‘‘:’’ (colon) delimited MAN-
PATH variable by typing , which you can then select a specific path to search for the manual
page, by using this command (replace MANPATH with your location of choice):

MANPATH="/usr/share/man" man ksh

Or, you may search and display the results from all MANPATHs using the manex (MAN-
ual EXtended) script written by the administrators of CoralCMD to make things easier.

5.1. Manual Sections

(1) User Commands
(1b) BSD Compatibility Package Commands
(1c) Communication Commands
(1s) SunOS Specific Commands

(2) System Calls

(3) Introduction to Library Functions
(3bsm) Security and Auditing Library Functions

(3c) Standard C Library Functions
(3cfgadm) Configuration Administration Library Functions
(3curses) Curses Library Functions
(3devid) Device ID Library Functions

(3devinfo) Device Information Library Functions
(3elf) ELF Library Functions
(3ext) Extended Library Functions
(3gen) String Pattern-Matching Library Functions

(3head) Headers
(3kstat) Kernel Statistics Library Functions
(3kvm) Kernel VM Library Functions
(3ldap) LDAP Library Functions

(3lib) Interface Libraries
(3m) Mathematical Library Functions

(3mail) User Mailbox Library Functions
(3malloc) Memory Allocation Library Functions

(3mp) Multiple Precision Library Functions
(3nsl) Networking Services Library Functions

(3pam) PAM Library Functions
(3proc) Process Control Library Functions

(3resolv) Resolver Library Functions
(3rpc) RPC Library Functions
(3sec) File Access Control Library Functions

(3secdb) Security Attributes Database Library Functions
(3socket) Sockets Library Functions
(3volmgt) Volume Management Library Functions
(3xcurses) X/Open Curses Library Functions

(3xnet) X/Open Networking Services Library Functions

(4) Device and Network Interfaces
(4d) Devices
(4fs) File Systems
(4i) Ioctl Requests

(4m) STREAMS Modules
(4p) Protocols

(5) File Formats and Configurations

(7) Standards, Environments, and Macros

(8) Maintenance Commands and Procedures

(9) Kernel Concepts
(9e) Driver Entry Points
(9f) Kernel Functions for Drivers
(9s) Data Structures for Drivers

6. Editors and Shells

There are many editors installed on CoralCMD, to make you comfortable in whatever envi-
ronment you want. Some notable examples include emacs, vim, nvi, vi, nano, and of course
the line-oriented editors ex, nex, and ed.

We also have a selection of shells to choose from, including (but not limited to) bash,
ksh, csh, and tcsh.

7. File and Directory Permissions

7.1. umask Command

The umask command is used to automatically set the chmod permission bits (which is
three-to-four columns, with each value ranging from numbers 0 to 7) in either your current ses-
sion, or, if you add it to your startup shell script, all sessions.

umask uses a mask to set its values, i.e. it uses subtraction from the highest down, so, to set
chmod 755, you would run umask 022.

This is useful in case you want to change the default permissions for which you create files.
By default your home directory and most (but not all, as some programs automatically restrict
access to sensitive data such as mailboxes and SSH keys) files are world-readable, meaning any
logged-in user on the system may view those files. If you do not like this, you may run the fol-
lowing commands:

find "$HOME" -type d -exec chmod 700 {} ;
find "$HOME" -type f -perm /111 -exec chmod 700 {} ;
find "$HOME" -type f ! -perm /111 -exec chmod 600 {} ;

And don’t forget to add the appropriate umask to your startup script:

umask 0077

7.2. Unix permissions vs Extended (NFSv4/ZFS) ACLs

In most POSIX-conformant filesystems, you have your standard Unix-style permissions,
modified with the chmod command. Usually this is in the syntax of something like chmod
ug+rwx filename.ext. In ZFS, our filesystem of choice, we use NFSv4 extended ACLs as
a way to supplement the existing POSIX-style ACLs with richer semantics, finer-grained access
control and inheritance settings.

To use these extended ACLs, you may use the chmod command, but where the octal bits or
symbolic letters appear, you create a long string of letters prefixed with A+, A-, or A=. An exam-
ple would be:

chmod -R A+user:myusername:full_set:fd:allow file-or-directory-name

This gives a user full control in an ACE to not only read, write, execute, etc, but also to
modify the ACLs to add more users or groups. You may also specify the symbolic letters by
hand, as described in chmod(1).

Below is an example of listing the ACLs on a file where users europa and xm have full ac-
cess.

xm@coralcmd.net:…hare/acl-testing/europaTestDir$ ls -V
total 1
-rwxr--r--+ 1 europa other 0 May 25 20:15 europaTest

user:europa:rwxpdDaARWc--s:------I:allow
user:xm:rwxpdDaARWc--s:------I:allow

owner@:rwxpdDaARWc--s:------I:allow
owner@:rw-p--aARWcCos:-------:allow
group@:r-----a-R-c--s:-------:allow

everyone@:r-----a-R-c--s:-------:allow

More info on how to work with extended ACLs (specifically NFSv4/ZFS style) may be
found at the manual page chmod(1).

8. SVR4 (default) commands vs. BSD commands (secondary) vs. pkgsrc (supplementary)

W.I.P.

The default SVR4-style commands are located under /usr/bin and /usr/sbin, and the BSD-
style commands are located under /usr/ucb. The BSD-style commands are appended near the end
of all users’ PATHs, for accessibility of commands that SVR4’s style does not offer. pkgsrc’s
supplementary software commands are located under /opt/local/bin, and includes many pro-
grams, including TeXlive and ImageMagick.

9. User Service Management For managing background services as a user, dinit has been added
to the system. On boot, all interactive users (that means you, too!) have a process started which
allows services to be run in the background. If you would like to run a process in the back-
ground 24/7, such as a network listener or an unprivileged daemon, you may do so by creating a
service descriptor, like so, inside ˜/.config/dinit.d/servicename:
type = process
command = /path/to/executable --arguments one two etc
restart = true
Then, you may enable the service and start it by running:
$ ln -s ˜/.config/dinit.d/servicename ˜/.config/dinit.d/boot.d/servicename
$ dinitctl start servicename
You may check the status of services by running dinitctl list. More information may be

found in the manual pages for dinit, dinitctl, and at the dinit homepage at
https://davmac.org/projects/dinit/.

10. Websites & CGI (Common Gateway Interface)

Each user has their own website, located publicly at https://username.coralcmd.net/, and lo-
cally accessible via their own home directory under ˜/public_html.

By default, each hour, permissions for the web directory are reset to a sane default to pre-
vent issues with the web server accessing the files.

10.1. .htaccess File

Placing a file named .htaccess in your public HTML directory or any subdirectory will
have the web server parse it for different directives, including (but not limited to) password pro-
tection, file and directory permissions, and SSL/TLS enforcement.

10.1.1. Example: Forcing SSL/TLS (HTTPS) Mode
RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI} [R=301,L]

10.2. Common Gateway Interface

This document will not go into the actual programming aspect of CGI, however the way
you may set it up is via an exectuable (chmod +x) file ending with the extension .cgi. Once
that file is created, the standard output must conform to the CGI standard, which, essentially, is
just a glorified HTTP protocol output. The actual executable file format can be one of two types:
an exectuable binary (ex. a C program compiled into an ELF binary) or a script using an inter-
preter such as Python 3 or Korn Shell or Perl.

The script style must, on the first line, contain a ‘‘shebang’’ and then the full system path to
the interpreter. As mentioned before, the full system path to an executable binary can be found
via the command which. An example for a bash script is shown below:

#!/usr/bin/bash
printf "Status: 200 OK\r\n"
printf "Content-Type: text/plain\r\n"
printf "\r\n"
printf "hello world\r\n"

Notice that according to the CGI and HTTP standards, each line must end with both a car-
riage return and line feed character (CRLF).

